How spatial planning constrains cross-border fisheries: the bio-economic DISPLACE evaluation on the Baltic Sea

DISPLACE_striking_plotWith our approach we aim at modelling the interaction between fisheries and stock spatial dynamics and assessing the interlinked consequences on both the vessel economy and the viability and sustainability of the harvesting (including the issue of energy efficiency for greener fisheries). We explore  alternative fishing effort allocation scenarios and management options. As such, we are designing a benchmark tool for conducting management strategy evaluations to capture short-term economic reactions from individual fisherman tactical decision-making.

In the growing marine spatial planning (MSP) legislative context, concurrent uses of the sea are constraining the possibilities of displacing each vessel´s fishing activities. These new constraints call for studies that would empower the fishing industry with the right tools and knowledge to engage in fair MSP dialogues. We should consider the impact assessment and scenario evaluation of wider marine cross-sector use, exploitation of the marine environment and competition for space in a spatial evaluation tool and our ongoing evaluation is precisely dedicated to investigate this aspect.

One current application considers the case of the international western Baltic Sea area and the ongoing spatial marine plans including offshore windmill farms and EU Natura 2000 conservation areas. For the first time some cross-national VMS data have been processed in the same  framework and the movement of around 300 large fishing vessels (Danish, German and Swedish vessels) were informed and simulated individually, each vessel displacing and harvesting on a hourly time step over a projection period of 5 years. Fine scale fishing pressure in space and time were then deduced and the effect of redirecting the effort towards some new areas and other benthic habitats evaluated.

Interesting results are emerging from the work and for example the simulated dynamic of vessels interlinked to harvested fish stocks led to higher revenues from catches which could offset the additional costs from effort displacement, with some side benefits from releasing the pressure on the fish stocks and marine habitats. At the individual scale, some vessels were detected strongly stressed and retracted, sometimes offering new opportunities for a part of the participants. These results are a valuable basis for engaging a dialogue with stakeholders and managers while a support tool for facilitating the understanding of the dynamics, reproducing the observed patterns and evaluating alternative scenarios, as described and applied to the Baltic Sea area.

This study is conducted in association with a number of EU research projects and the development of a spatial explicit bio-economic model that covers both many stocks and fisheries. We are convinced that the development of such an approach and its current application has the potential to form near future developments in EU from the perspective of the fisheries within the context of maritime spatial planning.

Francois Bastardie on Twitter
Francois Bastardie
Francois Bastardie is a DTU-Aqua Senior Scientist and method developer in the Section of Ecosystem-based Marine Management with a Ph.D. in Biological Science. He has been involved in several national and EU Funded projects developing expertise in spatial fisheries and fisheries databases. He has a strong background in modeling fishing and the bio-economic dynamics including developing agent-based models for combining marine ecosystems and natural resource extraction models, fisheries economics in a mixed fisheries perspective. He has an experience of 10 years leading to more than 35 peer-reviewed publications by conducting scientific-based fisheries management evaluation with scenario-testing evaluation and simulations, including fleet dynamics and consequences on the economy of fisheries, population dynamics and fish stock assessment. He was in charge of the evaluation of some of the EU long-term fisheries management plans with consequent participation to ICES and STECF working groups, including giving advise from regional to international policy makers.

Author: Francois Bastardie

Francois Bastardie is a DTU-Aqua Senior Scientist and method developer in the Section of Ecosystem-based Marine Management with a Ph.D. in Biological Science. He has been involved in several national and EU Funded projects developing expertise in spatial fisheries and fisheries databases. He has a strong background in modeling fishing and the bio-economic dynamics including developing agent-based models for combining marine ecosystems and natural resource extraction models, fisheries economics in a mixed fisheries perspective. He has an experience of 10 years leading to more than 35 peer-reviewed publications by conducting scientific-based fisheries management evaluation with scenario-testing evaluation and simulations, including fleet dynamics and consequences on the economy of fisheries, population dynamics and fish stock assessment. He was in charge of the evaluation of some of the EU long-term fisheries management plans with consequent participation to ICES and STECF working groups, including giving advise from regional to international policy makers.